

Leonard Pearlstine¹ Eric Swain² Lukas Lamb-Wotton³ Lu Zhai³ Laura D'Acunto² Jay Sah³ Tiffany Troxler³ Mike Ross³ Ximena Mesa³

¹National Park Service, Everglades National Park, Homestead, Florida

²U.S. Geological Survey, Davie, Florida

³*Florida International University, Miami, Florida*

Probabilistic Modeling of Coastal Vegetation Succession with Sea Level Rise

Purpose

Regional modeling of coastal landscape change with restoration and climate change

- Identifying potential areas at risk and spatial distributions of change
- Inform management and policy decisions
- Identifying information gaps & limitations of existing landscape data and models

Mangrove – Environmental response

High level of trait plasticity in response to salinity, flooding, and nutrients

The seedlings of all species require a very low salinity for their early growth

Phosphorous & hydroperiod differentiate species:

- White mangrove (Laguncularia racemose): more fertile sites
- Red mangrove (*Rhizophora mangle*): P-limited sites
- Black mangrove (Avicennia germinans): relatively high salinity and low N
- Red mangrove : permanently low salinity and relatively high N concentrations
- White mangrove and Black mangrove: Flooding duration < 50% of the year

If the rate of accretion and subsurface root accumulation is less than relative SLR, mangroves will become progressively drowned (e.g., Ellison & Stoddart 1991)

Increased CO₂ benefit may be offset by reduced growth from increased flooding and increased hydroperiod (e.g., Krauss et al 2008)

Vegetation Classification

NPS, South Florida & Caribbean Network

What drives mangrove distribution?

≥USGS

- Competition
- Nutrients
- Light
- Disturbance
- Salinity
- Temperature
- Hydrology

FIU

Biscayne and Southern Everglades Coastal Transport model

Hydrodynamic 2D representation of surface water

3D representation of groundwater

Salinity transport is represented and passed with leakage

Covers Everglades National Park and eastern coastal area

Water and Salinity Flux?

Groundwater Flux

Enhanced resolution with 2017 ENP Lidar

GEER 2019

BISECT

4-year mean Dry Season, Upper Quartile Depth

Current (2003) & 2' SLR

4-year mean Median Salinity

Current (2003) & 2' SLR

GEER 2019

ELVeS

Empirically-based probabilistic functions of vegetation community responses to changing environmental conditions.

Linking ELVeS with wildlife planning tools provides a dynamic land cover layer for habitat.

Designed to encourage updating as new information becomes available.

1966 obs points below Tamiami Trail. 80% used for calibration. Source: Jay Sah, Mike Ross, Jennifer Richards, Joel Trexler, NPS SFCN

Example Conditional Probabilities: Dry Season Upper Quartile Water Depths

Modeling Variables

• 6 Hydrologic metrics

(4—year mean May – April climate years)

- Days at depth 0 to 15 cm
- Days Days at depth 10 to 25 cm
- Annual depth std dev
- Wet season depth std dev
- Median depth in Dry season
- Upper Qtr depth in Dry season

Median Salinity

ELVeS Indexed Joint Conditional Probabilities

Example: Probability of Spikerush-Sawgrass community GIVEN:

4-year mean Days 0-5 cm

4-year mean

Dry Season Median

× ... ×

Median Salinity

Indexed Joint Conditional Probability

$$=\sqrt[n]{P1 * P2 * \cdots * Pn}$$

X

= joint probability of one community in one grid

"Equal effect" assumption

Modeled Existing Conditions

running average Maximum Salinity

running average Maximum Water Depth running average Maximum Salinity Fresh Marsh

Regime Shift

Continuing Exploration: Spatial Data Needs

- Phosphorous dynamic modeling: upstream and offshore sources
- Soils: type and depth
- Fire, Storms, Temperature extremes
- New SLR & Climate scenarios

Continuing Exploration: Spatio-temporal Modeling

- Random forests
- Multinomial logistic regression
- Bayesian multinomial logistic regression
- Integrated modeling and vulnerability decision support

≫US6

